

ESTRO 2025

2-6 May 2025

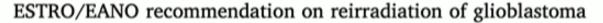
Vienna, Austria

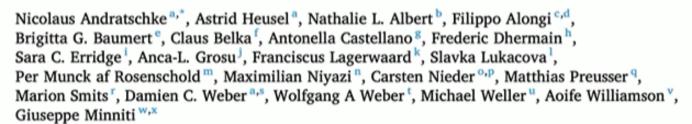
ESTRO HIGHLIGHTS: Neuro-Oncology

DR FADWA QACHACH

Joint ESTRO-EANO: Recommandation on Reirradiation of glioblastoma

Radiotherapy and Oncology 204 (2025) 110696


Contents lists available at ScienceDirect

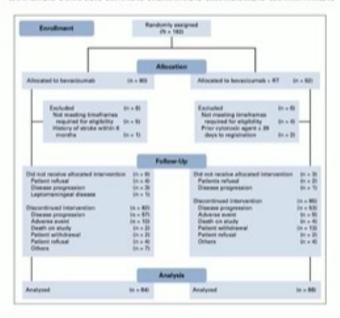

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

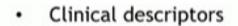
Guidelines

Why a guideline for reRT of GB?

Parameter	Reported
OS	95%
Local control	75%
QoL	10%
Toxicity	95%
Follow-up	100%
Intervall	90%
Syst. Tx	70%


Parameter	Reported		
Technique	100%		
Imaging	70%		
Registration	20%		
PTV overlap	40%		
Dose 1st RT	10%		
Dose 2nd RT	100%		
Dose sum 3D	15%		

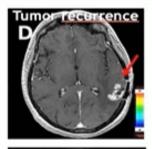
Parameter	Reported
OAR constraints	40%
Biol. Dose sum	25%
DHV PTV	35%
DVH OAR	25%
Cum DVH	10%


Level of reporting insufficient for quantitative analysis

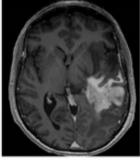
NRG Oncology/RTOG1205: A Randomized
Phase II Trial of Concurrent Bevacizumab and
Reirradiation Versus Bevacizumab Alone as
Treatment for Recurrent Glioblastoma

Christina I, Tolon, MD*; Stophanis I, Pugh, PhO*; Adam P, Olcher, MD, PhO*; Arthry J, Rater, MD*; Mortes M, Matessak, PhO*; Exista C, Laliana, MD*; Japel Houng, MD*; Oser Algan, MD*; Abmisha Dek, MD*; Lumbin Performan, MD*; John L, William, MD*; And P, Mortes MD*; And P, March C, March MD*; And MD*;

- Relevant endpoints
- Toxicity and QoL
- Volumes of GTV / PTV


- Type of re-irradiation not defined
- No data on volume overlap
- No dosimetric data
- No cumulative OAR data

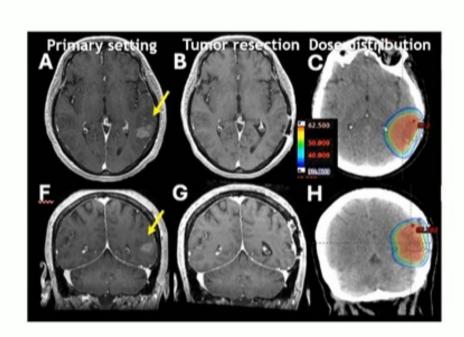
The ESTRO/EANO recomendation



Key questions based approach:

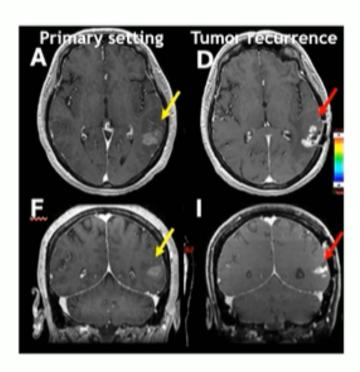
- · KQ1: Which patients should be considered for reirradiation?
- KQ2: What imaging is required to assess recurrence after primary treatment of GB?
- · KQ3: What are requirements for optimal target definition?
- KQ4: What is the recommended dose and fractionation for reirradiation?
- KQ5: What is the preferred treatment planning and delivery method?
- KQ6: How should cumulative doses be assessed with regards to safety?
- KQ7: What is the evidence for combined modality reirradiation?
- KQ8: What is the role of maintenance systemic therapy after reirradiation?
- KQ9: What follow-up schedule is recommended and what should be assessed?

A non-classical case


How does it apply with 2 historic reirradiation cases?

Case one: A classical approach

Primary treatment

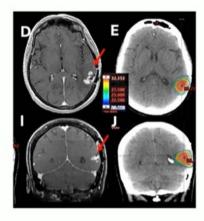

- 48 year old female patient
- Glioblastoma MGMT methylated
- Initial symptoms: seizures
- Gross tumour resection
- Adjuvant radiotherapy 30 x 2 Gy with concurrent temozolomide
- 6 cycles adjuvant temozolomide

Case one: A classical approach

Tumor recurrence

- Two years later dysphasia as initial symptoms
- cMRI revealed suspicion of recurrent tumor
- Reirradiation Type 1
- Multidisciplinary tumorboard: Recommendation of reirradiation

KQ1: Which patients should be considered for reirradiation?

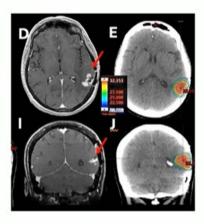

Recommendations / Statements	Strength	Level of evidence
Reirradiation of patients with recurrent glioblastoma should be based on individual decision making and should only be recommended after careful discussion in an MDT balancing risks, benefits, and treatment alternatives	Strong	Expert opinion
Reirradiation of patients with recurrent glioblastoma may be considered with a KPS >=60 and an interval >6 months from the previous radiotherapy independent of age or MGMT methylation status	Conditional	Moderate
After gross total resection of recurrent glioblastoma reirradiation may be considered in patients with favorable prognostic factors	Conditional	Low
Although reirradiation has not yet been shown to provide an OS benefit, a prolongation of progression-free survival can be expected after careful patient selection		Moderate

KQ2: What imaging is required to assess recurrence after primary treatment of GB?

Recommendations / Statements	Strength	Level of evidence
To assess recurrence, particularly in-field, contrast-enhanced T1- weighted imaging is required, and the addition of advanced MRI or AA-PET is recommended for ist differentiation from pseudoprogression/ radiation necrosis	Strong	Low
Advanced imaging techniques (i.e., perfusion MRI, MR spectroscopy, AA-PET) increase diagnostic accuracy for differentiation of recurrence from pseudoprogression, but no technique, nor combination of techniques, is clearly superior to the other.	7	Low

Tumor recurrence:

- Recommendation for a second course of radiation
- Target volume definition:
 - T1-weighted MRI
 - PTV= GTV + 3 mm



KQ3: What are requirements for optimal target definition?

Recommendations / Statements	Strength	Level of evidence
Rigid image registration for target volume definition and dose accumulation is recommended.	Strong	Moderate
T1-weighted contrast enhancing lesions, new or progressive T2/FLAIR abnormalities, and AA-PET-avid regions should be included in the GTV.	Strong	Expert opinion
A CTV margin is not mandatory, but a GTV to CTV margin of 3-5 mm can be added optionally (depending on overall volume, dose/fractionation and pattern of recurrence), while a maximum CTV to PTV of 3mm is recommended.	Strong	Expert opinion
If functional imaging is considered, both AA-PET as well as multiparametric MRI are valid options, although no consensus could be reached to whether or not to include perfusion suspect regions into the GTV.	Strong	Expert opinion

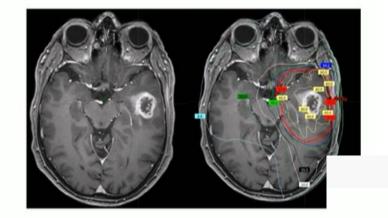
Tumor recurrence:

- Recommendation for a second course of radiation
- · Treatment: 5x5.5 Gy

KQ4: What is the recommended dose and fractionation for re-irradiation

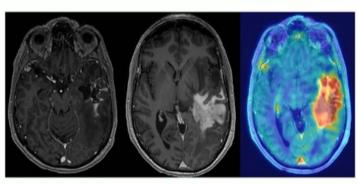
Recommendations / Statements	Strength	Level of evidence
A treatment in which a sufficient dose is delivered is preferred, and therefore, the biological effective dose should be above 36 Gy in 2 Gy fractions.		Moderate
Hypofractionated radiosurgery is preferred for lesions (GTV size) ≤ 3cm.	Strong	Expert opinion
There is no upper threshold volume for (hypo-) fractionated IGRT of lesions > 3cm.	Conditional	Expert opinion

KQ7/8: What is the evidence for combined modality re-irradiation? What is the role of maintenance systemic therapy after re-irradiation?


Recommendations / Statements	Strength	Level of evidence
For combined modality treatment target definition, dose and fractionation should not be adjusted.	Strong	Expert opinion
The use of systemic treatment together with re-irradiation of recurrent glioblastoma should be further explored in prospective clinical trials.	Strong	Expert opinion
Combined modality treatment in re-irradiation appears to be well tolerated but has not been shown to provide an OS benefit.		High
A clear recommendation for this approach, especially with respect to a specific drug combination, cannot be given.		Moderate
Currently, there is no indication for adjuvant systemic therapy after re-irradiation.		Expert opinion

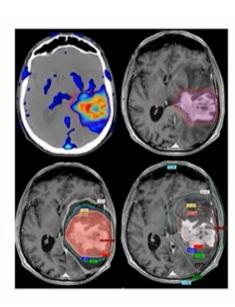
Case two: A non- classical approach

Primary treatment


- 57 year old male patient
- Glioblastoma MGMT methylated
- Initial symptoms: seizures
- · Gross tumour resection
- Adjuvant radiotherapy 30 x 2 Gy with concurrent temozolomide
- 6 cycles adjuvant temozolomide

Case two: A non- classical approach

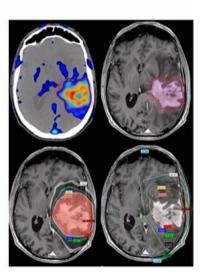
Tumor recurrence / persistence


- 2 cycles temozolomide
- · 11 cycles Bevacizumab
- 2 cycles lomustine
- 8 cycles Bevazizumab

→ 4x switch of systemic therapy due to progression over 33 months.

Tumor recurrence:

- Recommendation for a second course of radiation
- GTV: CE T1 weighted images + FET-avid regions
- No CTV
- PTV: +3 mm



Tumor recurrence: Treatment

- Prescribed dose:
 10 x 3.5 Gy homogenous
- · max. GTV diameter: 8 cm
- GTV: 81.6 cc, PTV: 130.1 cc

Cumulative doses (EQD2)

- Dmean (brain) = 26.8 Gy
- D0.1cc (brain) = 108.16 Gy
- D0.1cc (brainstem) = 77.09 Gy
- · Optic structures respected

KQ5: What is the preferred treatment planning and delivery method?

Recommendations / Statements	Strength	Level of evidence
Advanced IGRT techniques should be employed for high dose re-irradiation	Strong	low
EQD2Gy dose recalculation is preferred (over BED and EUD) and should be used for dose accumulation, as it is most commonly used in the literature and easy to interpret.	Strong	moderate
The minimum set of OAR to evaluate after biological dose accumulation include: brain, brain stem, chiasm, optic nerves/tract, cranial nerves in close proximity to PTV	Strong	Expert opinion

KQ6: How should cumulative doses be assessed with regards to safety?

Recommendations / Statements	Strength	Level of evidence
PTV prescription and compromise should follow the following cascading steps: 1) No PTV compromise if cum. OAR doses are deemed safe and/ or acceptable. 2) PTV compromise allowed to keep cumulative OAR doses safe and/ or acceptable. 3) If a reasonable CTV / GTV dose coverage is not to be achieved, dose prescription may be adapted to reach safe or acceptable OAR doses.	Strong	Expert opinion
Recovery from previous irradiation has only consistently been described for brain tissue and spinal cord and thus, should only be considered for assessing cumulative doses in these organs	Strong	Low

Tumor treating fields (TTFields) and Stereotactic Radiosurgery Guided by FET-PET for **rGBM** (TTaRGET)

A Phase 2, Single-arm, Externally-Controlled Trial

Maciej Harat, Magda Adamczak-Sobczak, Maciej Blok, Michał Marjański, Izabela Zarębska, Bogdan Małkowski, Marek Harat

Radiotherapy, Neurooncology and Radiosurgery Department, FLOC Bydgoszcz University of Science and Technology, Poland

Background

- Efficacy of stereotactic radiosurgery in recurrent glioblastoma (rGBM) is limited due to extensive invasion that is poorly visible on MRI.
- FET-PET (18F-fluoro-ethyl-tyrosine-PET) refines target volumes and decreases geografical misses^{1,2,3,4}
- Tumor Treating Fields (TTFields), a non-invasive approach that uses low-intensity alternating
 electric fields to disrupt tumor cell division, are approved in rGBM based on EF-11 trial (SoC vs
 TTFields montherapy a multicenter randomized trial).
- In rGBM median OS ranges from 3-9 months and 1-year OS rate 20-44% underscoring the need for more effective combination strategies.

Hypothesis and Aims

- Hypothesis: Biologically-defined targets for SRS combined with TTFields will be complementary and improve outcomes with minimal toxicity
- Aim: To study the efficacy and safety of FET-PET-based SRS in combination with TTFields

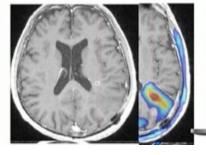
Methods

- 40 patients with recurrent glioblastoma according to WHO 2016 classification (NCT04671459)
- FET-PET/MRI hybrid scanner for SRS treatment planning dual FET-PET aquisition
- TTFields started within 7 days of FET-PET
- SRS/mf-SRS (1 x 18-20 Gy or 5 x 5-6 Gy) within 14 days of FET-PET
- · Preplanned comparison with EF-11 trial (TTFields monotherapy for rGBM vs SoC):

+20% increase in 1-year survival rate needed to find significant difference

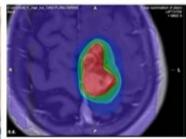
Same inclusion and exclusion criteria

Propensity score matched analysis

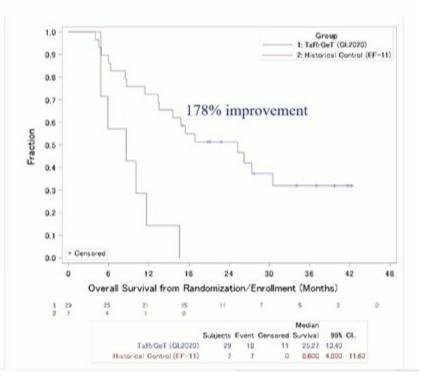

FET-PET

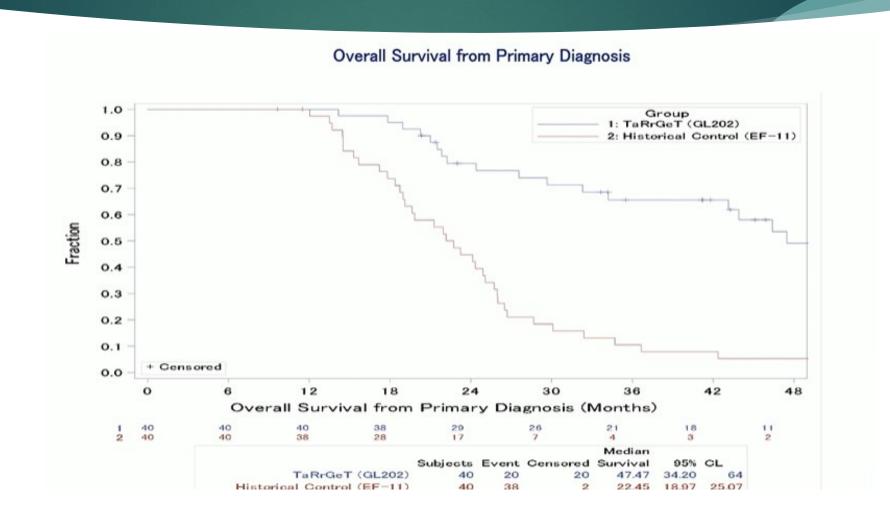
days

TTFields

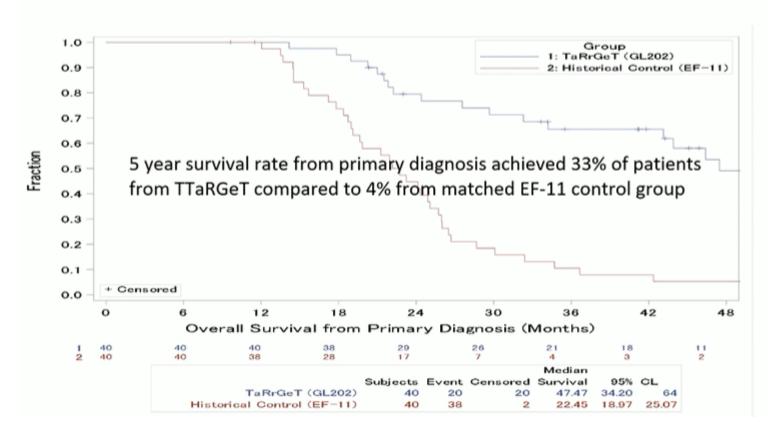


SRS

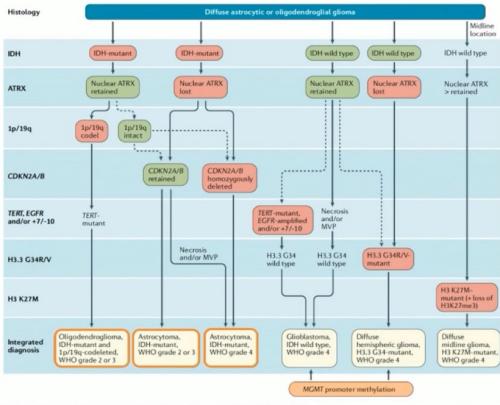



Matched analysis with EF-11 - Overall Survival

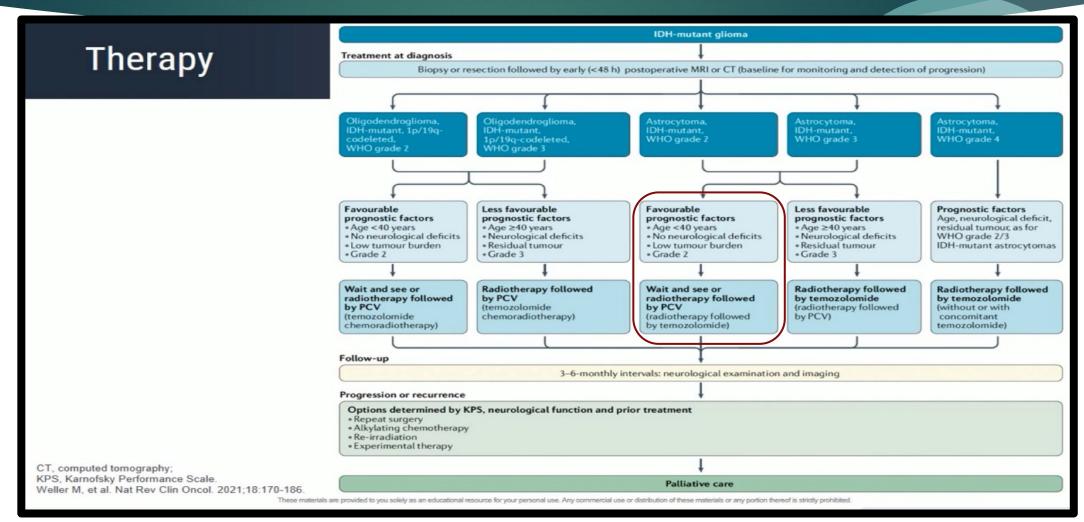
Overall Survival from Randomization/Enrollment


1: TaRrGeT (GL2020) 0.9 2: Historical Control (EF-11) 0.8 12 months 0S +23% AR difference 0.7 Log Rank P = 0.014 0.6 0.5 0.4 0.3 0.2 0.1 + Censored Overall Survival from Randomization/Enrollment (Months) Subjects Event Censored Survival TaRrGeT (GL2020) Historical Control (EF-11)

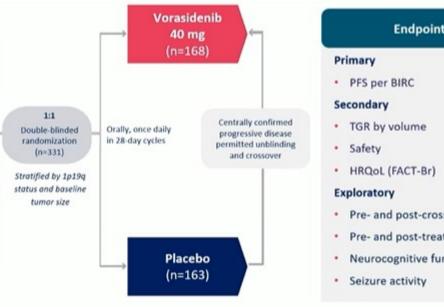
Matched population with a first recurrence



Conclusions


- TTaRGET is more effective than pre-defined before the trial (+23% improvement in annual survival rates -PSM)
- TTaRGET is effective in MGMT methylated and unmethylated subgroups
- TTaRGET is safe and well tolerated, although RICE remains a frequent complication (mainly asymptomatic)

Diagnosis


MVP, microvascular proliferation. Weller M, et al. Nat Rev Clin Oncol. 2021;18:170-186.

The INDIGO Trial INvestigating vorasiDenIb in GliOma (INDIGO; NCT04164901)

Key eligibility criteria

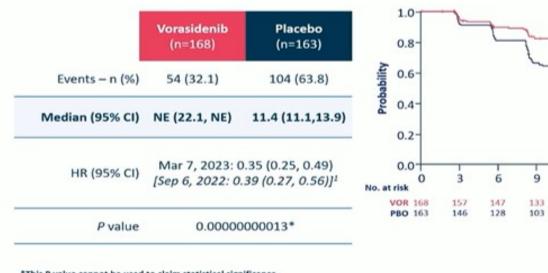
- ≥12 years of age
- mIDH1/2* Grade 2 oligodendroglioma or astrocytoma per 2016 WHO guidelines
- ≥1 prior surgery for glioma
- Measurable non-enhancing disease (≥1 target lesion measuring ≥1 cm × ≥1 cm), confirmed by BIRC
- Not in need of immediate chemotherapy or radiotherapy per investigator assessment

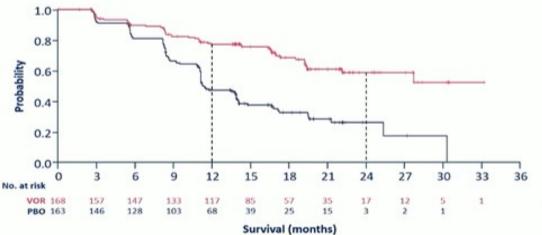
Endpoints included

Key secondary

TTNI

- Pre- and post-crossover TGR
- Pre- and post-treatment TGR
- Neurocognitive function


*Centrally confirmed using an investigational clinical trial assay, based on the Oncomine Dx Target Test and developed in partnership with Thermo Fisher Scientific, Inc. BIRC, blinded independent review committee; FACT-Br, Functional Assessment of Cancer Therapy - Brain; HRQoL, health-related quality of life; mIDH1/2, mutant isocitrate dehydrogenase 1/2; PFS, progression-free survival; TGR, tumor growth rate; TTNI, time to next intervention ClinicalTrials.gov. NCT04164901.


Emergence des IDH Inhibitors.

INDIGO timeline

Primary Endpoint: PFS per BIRC

12 months:

Vorasidenib: 77.3%

Placebo: 47.3%

*This P value cannot be used to claim statistical significance.

PFS was the time from randomization up to death or radiographic progressive disease and was assessed by the BIRC per modified RANO-LGG.

PFS per investigator results were consistent with these findings, with an HR of 0.34 (95% CI 0.23–0.50). Data cut-off: March 7, 2023.

BIRC, blinded independent review committee; NE, not evaluable; PBO, placebo; RANO-LGG, Response Assessment in Neuro-Oncology-low-grade glioma; VOR, vorasidenib. Mellinghoff IK et al. J Clin Oncol 2023;41(Suppl.17):LBA1.

14

24 months:

Vorasidenib: 58.8%

Placebo: 26.2%

Vorasidenib has a Manageable Safety Profile^{1,2}

	Vorasidenib (N=167)	Placebo (N=163)
Any Grade ≥3 AE – n (%)	38 (22.8)	22 (13.5)
Increased alanine aminotransferase	16 (9.6)	0
Seizure	7 (4.2)	4 (2.5)
Increased aspartate aminotransferase	7 (4.2)	0
Increased gamma-glutamyltransferase	5 (3.0)	2 (1.2)
Syncope	3 (1.8)	1 (0.6)
Hypertension	2 (1.2)	3 (1.8)
Decreased neutrophil count	2 (1.2)	0

Treatment interruption due to TEAE

- Vorasidenib 29.9% (n=50)
- Placebo 22.7% (n=37)

Dose reduction due to TEAE

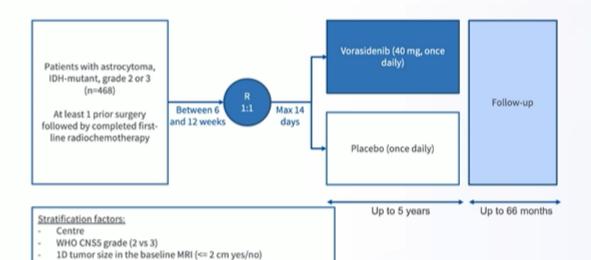
- Vorasidenib 10.8% (n=18)
- Placebo 3.1% (n=5)

Discontinuation due to TEAE

- Vorasidenib 3.6% (n=6)
- Placebo 1.2% (n=2)

No fatal TEAE

New Results Generate Many New Questions


- Vorasidenib for which patient and when?
- OS benefit of vorasidenib?
- · How to improve accuracy of tumor grading?
- Vorasidenib and/or radiochemotherapy in first line?
- Vorasidenib at progression after radiochemotherapy?
- Vorasidenib for Grade 3 and 4 IDH-mutant gliomas?
- Molecular biomarkers for response?
- Vorasidenib for contrast-enhancing gliomas?
- · Advanced neuroimaging and PET for patient selection and follow-up?
- · Sequencing or combining vorasidenib with other targeted therapies?
- Vorasidenib as maintenance treatment?

Phase III trial EORTC-2427 (VIGOR)

Type of completed post-RT adjuvant chemotherapy (PCV vs TMZ)

PI: M. Preusser, Co-PI: M. Geurts

PFS (locally assessed)

Secondary endpoints

- PFS (by central review)
- Overall survival
- Overall response
- Time to next intervention
- Safety
- Quality of Life
- Neurological symptoms
- Neurocognitive function

Phase

Take-Home Messages

PI: M. Preusse

IDH mutation assessment is critical for glioma classification and treatment.

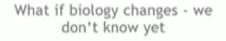
Patients w IDH-muta

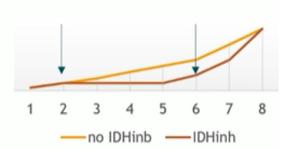
At least : followed by line radio Vorasidenib has been approved in several countries as a new standard of care for IDH-mutant grade 2 gliomas

Understanding the importance of pathological grading (Grade 2 vs Grade 3) and the variability in interpretation

Plus de précision par l'anapath

- Stratification Centre
- WHO CH
- 1D tum - Type of
- Ongoing trials are shaping potential future options for patient management
 - VIGOR: vorasidenib maintenance
- Careful consideration is needed for treatment decisions and response monitoring in clinical practice.


IDH, isocitrate dehydrogenase; SNO, Society for Neuro-Oncology; TTNI, time to next intervention



WHEN: In era of IDH inhibitors - when to use RT

- Those not eligible for IDH inhibitors (off trials)
 - Grade 4 post op
 - Grade 3 post op (or if foci G3 progressing)
 - · Grade 2 progressing tumour or poor prognostic features
 - Unable to have drug (e.g. deranged LFTs)
 - · Do not want IDH inhibitor
 - Grade 2 on biopsy but marked enhancement (probably not grade 2)
- Those coming off IDH inhibitor
 - Adverse effects (e.g. raised transaminases +++)
 - · Progressive disease
 - Now no longer dependent on 2HG- is it the same disease??
 - Will they grow faster? NO data yet but theoretically
 - · Importance of getting pre and post-IDHinhib samples compared

HOW - PLANNING - ESTRO EANO recommendations

TARGET DELINEATION

- Fused MRI -
 - Preferably 3 Tesla
 - 3D T1 pre and post contrast and 3D FLAIR
 - Low grade glioma ideally 3-4 months post op to allow surgical changes to settle
 - High grade glioma new MRI for planning (but post op oedema may not have settled)
- PET: less evidence than for IDH wildtype glioma and not widely available area of ongoing research
- · OARs standard 'brain set'
 - Tolerances same as for IDH wild-type (see ESTRO IDH wildtype guidelines)
 - · Greater importance of trying to reduce long term neuro-cognitive effects
 - sparing normal brain (e.g. keep mean brain-GTV as low as possible)
 - hippocampi (esp contralateral) (e.g. keep D40% bilateral hippo to <7.3Gy)

HOW - PLANNING - ESTRO EANO IDH mutated recommendations

MARGINS:

	GRADE 2	GRADE 3	GRADE 4					
GTV	Resection cavity and any residual tumour after surgery PET or perfusion /diffusion MRI may help distinguish oedema and tumour							
	T2/FLAIR almost certainly tumour	T2/FLAIR could be either tumour or oedema	T2/FLAIR could be either tumour or oedema					
CTV	10mm expansion -edited	15mm expansion -edited	15mm expansion -edited					
PTV	Departmental specific - usually $\leq 3 \mathrm{mm}$							

HOW: ESTRO EANO IDH mutated recommendations: DOSE

Trial name	Inclusion	Astro		Oligo		"Oligo astro"		Randomisation	Radiotherapy	Conclusions
		2	3	2	3	2	3			
Early vs late										
EORTC 22,845 (38)	1986-1997	×		х		×		RT vs observation	28*1.8 Gy	No OS benefit (7.4 vs 7.2y) but PFS benefit (5.3 vs 3.4) for early RT
Alliance N0577 (CODEL) [86]	2009-2011				ж			RT vs RT + TMZ vs TMZ	33*1.8 Gy	PFS worse in TMZ only arm (5y PFS 56 % vs 33 %). Study design changed RT + PCV vs RT + TMZ
EORTC 22,033 [47] Dose escalation	2005-2010	×						RT vs TMZ	28*1.8 Gy	No difference in PFS (3.8 vs 3.3y)
EORTC22844 [44]	1985-1991	×		х		×		RT vs dose-escalated RT	25*1.8 Gy vs 33*1.8 Gy	No OS benefit (5y OS 58 % vs 59 %) or PFS benefit (5y PI 47 % vs 50 %) for high dose RT
Intergroup [73]	1986-1994	×		×		×		RT vs dose-escalated RT	28*1.8 Gy vs 36*1.8 Gy	No OS benefit (15y OS 22 % vs 25 %) or PFS benefit (1: PFS 15 % vs 10 %) for high dose RT

	Gra	ade 2	G	rade 3	Grade 4	
	50.4Gy 2	8 fractions	59.4Gy	33 fractions	60Gy 30 fractions	
Alternative	54Gy 30) fractions			59.4Gy 33 fractions	
	codel	non-codel	codel	non-codel		
Adj Chemo	PCV x 6	PCV x 6 or TMZ x12	PCV x 6	TMZ x 12	TMZ × 6	

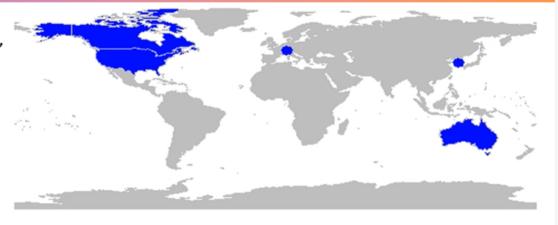
Presenting Author

Dr Susanne Rogers Radiation Oncology Center Mittelland, Canton Hospital Aarau, Aarau, Switzerland

Lead Author

Dr Cristian Udovicich Peter MacCallum Cancer Centre, Melbourne, Australia

INTERnational collaboration of NEOadjuvant stereotactic radiosurgery for brain metastases: the INTERNEO individual patient data meta-analysis


INTERNEO (INTERnational collaboration of NEOadjuvant SRS for brain metastases)

 9 institutions across 5 countries (Australia, Canada, South Korea, Switzerland, USA)

Eligibility Criteria

- Consecutive patients undergoing planned SRS prior to resection
- 2012-2023
- Any solid organ primary
- No prior local therapy to metastasis (SRS or surgery)

<u>Endpoints</u>: local recurrence; radionecrosis (any grade and symptomatic); leptomeningeal disease (overall and nodular)

Baseline & Treatment Characteristics

179 patients

189 brain metastases 43% NSCLC 29mm median diameter

Median follow-up 28.4 months

Fractionation

Single-fraction: 53% Multi-fraction: 47%

Single-fraction dose

Median: 18 Gy (IQR 16-20)

Multi-fraction dose

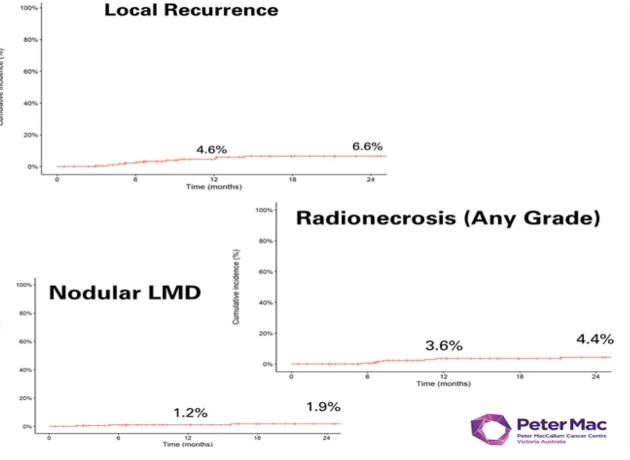
24 Gy/3#: 55% 27 Gy/3#: 25% Other: 20% (18 Time from SRS to surgery Median 3 days

Extent of resection

Gross total resection: 96% Subtotal resection: 4%

Resection type

Piecemeal: 54%



12-month	24-month	
(95% CI)	(95% CI)	
Local Re	currence	(%)
4.6%	6.6%	idence
(1.4-7.6%)	(2.8-10.3%)	Sumulative incidence (%)
		Cumul
Radionecrosi	is (any grade)	
3.6%	4.4%	
(0.7-6.4%)	(1.2-7.5%)	
Symptomatic	Radionecrosis	
1.8%	1.8%	
(0.0-3.8%)	(0.0-3.8%)	
Leptomenin	geal Disease	
7.2%	11.0%	9
(3.2-11.0%)	(5.9-15.7%)	dence (9
Nodular Leptom	eningeal Disease	Sumulative incidence (%)
1.2%	1.9%	Cumu
(0.0-2.7%)	(0.0-4.0%)	
Marietian uda		

INTERNEO: Summary

- Global experience
- Extended follow-up (median 28 months)
- Multi-fraction neoadjuvant SRS: high proportion (47%), largest cohort

Excellent 12-month outcomes

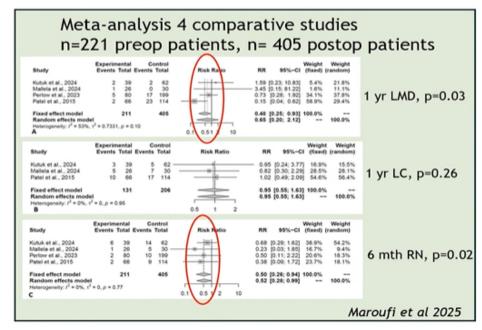
- Local recurrence: 5%
- Radionecrosis (any grade/symptomatic): 4%/2%
- Nodular LMD: 1%

Mittellan

Susanne Rogers MD PhD Radio-Onkologie-Zentrum Mittelland, Kantonsspital Aarau, Switzerland

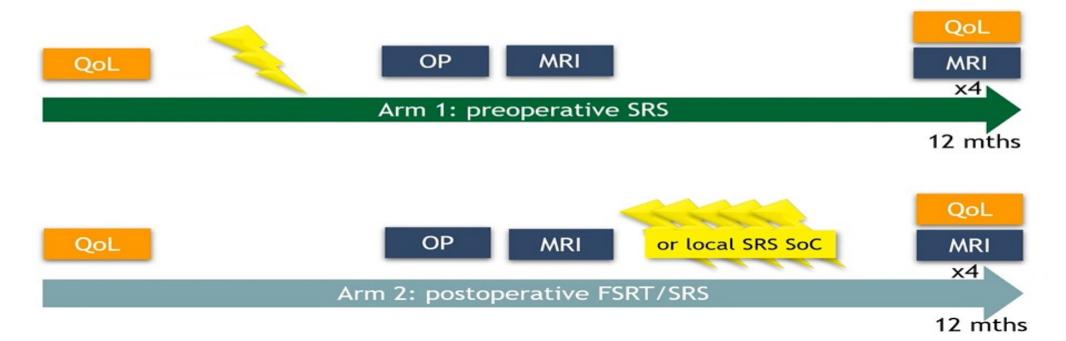
PREOP-2: An international randomised controlled trial of preoperative *vs* postoperative SRS for brain metastases: a planned interim analysis

Inselspital E.Ermis, I.Zubak
KSGR B.Baumert, C.Zweifel
KSSG D.Brugge, M.Neidert
KSW C.Oehler, M-E.Halatsch
LUKS G.Studer
KSA O.Riesterer, C.Musahl

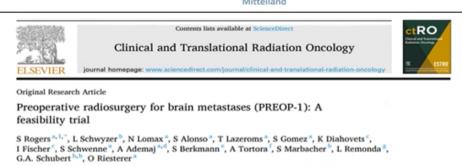


Rationale for preoperative SRS for brain metastases

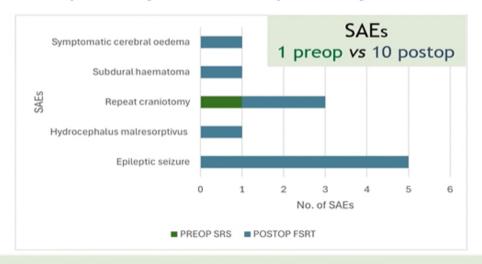
- Sterilisation of disseminated tumour cells
- More accurate target definition
- Smaller clinical and planning target margins
- ✓ Irradiated tissue subsequently resected
- Less delay to systemic therapy
- Patient convenience
- Reduction in leptomeningeal recurrence

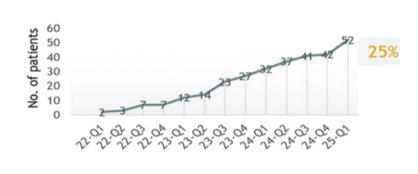


PREOP-2: a randomised international Phase III trial


PREOP-2

- Eligibility: BM ≤ 4 cm, predicted GTR, ≤3 BM for SRS, cancer diagnosis
- Primary endpoint: Time to leptomeningeal disease





- Preoperative SRS was performed in 100% (21/21) patients in Arm 1
 - The mean interval between preoperative SRS and resection of the brain metastasis was 1.9 (± s.d. 1.94) days, which was well within the maximum of 1 week interval recommended in the protocol.
- Postoperative FSRT was delivered to 100% (19/19) patients in Arm 2
 - The mean interval to start of postoperative FSRT was 21.9 (\pm s.d 11.6) days, within the recommended 30 days.

Planned Interim Analysis: Toxicity


- 11/19 SAEs were neurological (all grade 3)
- 9/11 'possibly' and 2/11 'probably' related to either SRS/FSRT or neurosurgery

Mittelland

Conclusions: Preoperative SRS appears safe and feasible PREOP-2 will continue to accrue susanne.rogers@ksa.ch

